
IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 12, December 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51229 139

Phase Aware Job Scheduling for MapReduce in

Hadoop

Snehal Kapde
1
, J.V. Shinde

2
, N.R. Wankhade

3

Student, Comp Dept, Late G.N. Sapkal C.O.E., Nashik, India
 1

Asst. Professor, Comp Dept, Late G.N. Sapkal C.O.E., Nashik, India
 2

Assoc. Professor, Comp Dept, Late G.N.Sapkal C.O.E., Nashik, India
 3

Abstract: MapReduce is a framework using which we can write applications to process huge amounts of data,

inparallel, on large clusters of commodity hardware in a reliable manner. MapReduce is a model for the data-

intensivecomputation. However, despite recent efforts towards designing efficient scheduler to perform MapReduce,

the available solutions focuses on scheduling at the task-level offers suboptimal performance in executing jobs. This

isbecause tasks can have highly varying resource requirements during their lifetime, which makes it difficult

forschedulers to effectively utilize the available resources to reduce job execution time. PRISM-a fine grained phaseand

resource aware scheduler was introduce which mainly focuses on designing task level scheduler. The phasebased

resource aware scheduler offers high resource utilization and provides improvement in job running time.In my

proposed system I have used the virtual memory to overcome the disadvantage of PRISM and using thepausing phase.

In this the resource will able to use virtual resource. Instead of going into paused phase it is possibleto use resource

virtually till the resource is available. This will surely help the job running significantly reducing the delay.

Keywords: Cloud computing, MapReduce, Hadoop, scheduling, resource allocation.

I. INTRODUCTION

Previous to our development of mapreduce, the authors

and many others at google applied hundreds of special-

purpose computations thatmethod massive amounts of raw

facts, such as crawled files, netrequest logs, and many

others., to compute diverse kinds of derived records,

which includesinverted indices, numerous representations

of the graph structure of webdocuments, summaries of the

number of pages crawled according to host, andthe set of

most common queries in a given day. Maximum such

computations are conceptually straightforward. However,

the enter facts is use massive and the computations need to

be disbursed across massesor heaps of machines in order

to finish in an affordable quantity oftime. The troubles of

the way to parallelize the computation, distribute

therecords, and cope with disasters conspire to difficult to

understand the unique easy computation with huge

quantities of complicated code to cope with those troubles.

The major contributions of this work are a simple and

powerful interface that enables automatic parallelization

and distribution of large-scale computations, combined

with an implementation of this interface that achieves high

performance on large clusters of com- modity PCs. The

programming model can also be used to parallelize

computations across multiple cores of the same

machine.The phase-level scheduling algorithm improves

execution time and resource utilization without

introducing any stragglers with the help of Virtual

Space.The main objective of the phase-level scheduling

alongwith the Virtual Space is to reduce the delay that

occursduring the "pause" stage of the node manager and

also toincrease the job running time and the resource

utilizationwhen compared with the task-level scheduling.

Phase basedscheduling algorithm. In order to overcome

the issue ofdelay during the job execution due to the

pause: stage, thevirtual space is allocated to the node

manager. Thus theaverage job running time will be

improved when comparedwith the phase based scheduling

algorithm without virtualspace.

II. OBJECTIVE

 To improve the job running time and resource

utilization.

 To improve the data locality.

III. LITERATURE SURVEY

1] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F.

Cetin, and S. Babu, “Starfish: A self-tuning system for big

data analytics,”in Proc. Conf. Innovative Data Syst. Res.,

2011, pp. 261–272.

Starfish can provide accurate resource information that can

be used by the scheduler so that it can take effective

scheduling decisions and reduce the job execution time.

By using such job profiler integrated within the scheduler,

the performance of the scheduler is effective than existing

task level scheduler. It collects the past executed jobs

profile information at a fine granularity for job estimation

and automatic optimization. However, collecting detailed

IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 12, December 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51229 140

job profile information with a large set of metrics

generates an extra overhead, especially for CPU-intensive

applications.As a result, Starfish overestimate the

execution time of a Hadoop job.

2]J. Polo, C. Castillo, D. Carrera, Y. Becerra, I. Whalley,

M. Steinder,J. Torres, and E. Ayguade, “Resource-aware

adaptive scheduling for MapReduce clusters,” in Proc.

ACM/IFIP/USENIX Int. Conf.Middleware, 2011, pp.

187–207.

-In the slot-based resource allocation scheme, the physical

resources on each machine are captured by the number of

identical slots that can be assigned to tasks. The problem

with that slot-based resource allocation is that the run-time

resource consumption varies from task to task and from

job to job.

3] J. Dean and S. Ghemawat, “Mapreduce: Simplified data

processing on large clusters,” Commun. ACM, vol. 51, no.

1, pp. 107–113, 2008.

The input data is usually large and the computations have

to be distributed across hundreds or thousands of machines

in order to finish in a reasonable amount of time. The

issues of how to parallelize the computation, distribute the

data, and handle failures conspire to obscure the original

simple computation with large amounts of complex code

to deal with these issues.

As a reaction to this complexity, a new abstraction that

allows us to express the simple computations we were

trying to perform but hides the messy details of

parallelization, fault tolerance, data distribution and load

balancing in a library was introduced. The use of a

functional model with user-specified map and reduce

operations allows us to parallelize large computations

easily and to use re execution as the primary mechanism

for fault tolerance.

The automatic parallelization and distribution of large-

scale computations, combined with an implementation of

this interface achieves high performance on large clusters

of commodity PCs. Still the operation is applicable at task

level only that can be further divided into phases and the

further parallelization in phases can cause the overhead

problem.

IV. RELATED WORK

The maximum famous implementation of mapreduce is

apache hadoop mapreduce [1]. A hadoop cluster consists

of a huge quantity of commodity machines with onenode

serving as the master and the others appearing as slaves.

The master node runs a useful resource supervisor (also

referred to as a jobtracker) that is liable for scheduling task

on slave nodes. Each slave node runs a neighborhood node

manager (also referred to as a task tracker) this is

chargeable for launching and allocating sources for each

task. To accomplish that, task tracker launches a Java

Virtual Machine (JVM) that executes the corresponding

map or reduce task. As a hadoop cluster is mostly a multi-

consumer machine, many customers can concurrently

publish jobs to the cluster. The job scheduling is

accomplished by using the useful resource manager inside

the master node, which continues a listing of jobs inside

the system.

Each slave node monitors the progress of each running

task and available resources at the node, and periodically

(usually among 1-3 seconds) transmit a heartbeat message

to deliver this facts to the master node. The resource

scheduler will use the furnished data to make scheduling

decisions. Current hadoop activity schedulers carry out

task-level scheduling where tasks are taken into

consideration as the greatest granularity for scheduling. In

the map section, a mapper fetches input data block from

the hadoopDistributed File System [4] and applies the

consumer-described map characteristic on every record.

The map characteristic generates facts which might be

serialized and amassed right into a buffer.

V. PROPOSED SYSTEM

We present a prism, such that it allocates a fine-grained

assets at the phase-level to perform process scheduling.

Prism specially consists of 3 additives: first one is the

phase based totally scheduler at master node, local node

manager at segment transaction with scheduler and job

development monitor to capture phase -level information.

To achieve those three stages, will carry out a phase-level

scheduling mechanism. When the task needs to scheduled

from node manager, scheduler replies with assignment

scheduling request. Then node manager launches a task.

After final touch of its execution of phase, alternatively

subsequent task will launches. Even as proceeding these

phases, it will pause for a while to remove the useful

resource battle. At the same time as proceeding a task, it

has many run-time resources within its lifetime.

While scheduling the process, PRISM offers higher degree

of parallelism than present day hadoop cluster. It refers on

the phase-level to improve aid utilization and

performance. The primary objective of the phase-stage

scheduling alongside the digital space is to lessen the

delay that occurs for the duration of the "pause" level of

the node manager and additionally to boom the process

going for walks time and the aid usage when in

comparison with the mission-level scheduling.

Segment primarily based scheduling algorithm. So as to

overcome the issue of put off at some point of the job

execution because of the pause: stage, the digital space is

allocated to the node manager. As a consequence the

average activity running time could be improved while as

compared with the segment primarily based scheduling

algorithm without virtual area.

IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 12, December 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51229 141

VI. ARCHITECTURE DIAGRAM

VII. MODULES

There are 3 modules to be used. They are as follows

 HadoopMapReduce

It is simple slot-based allocation scheme. It will not take

any run time sources whilst enforcing task. To begin with

it has one hadoop cluster, consisting of 1 large machine as

master node and its miles related to many slave nodes. The

responsibility of master node is to scheduling process to

all slave nodes. On this module simple mapper and

reducer features could be cope with by using the task.

Here hadoop allotted file system offer statistics blocks to

all map and reducetasks.

 Prism

At the same time as allocating the resources, sometimes

resources can be idle or resouces are run -time useful

resource. If they're idle, resource allocation must be

wasted. So run-time resources stimulate to develop fine-

grained resources on the phase level to acquire unique

volumes of data in single device such that it improve

useful resource usage in comparison to the opposite tasks.

The key difficulty is that once one task has finished in

phase level, next phase of task is not scheduled without

delay. It'll “pause” for some time time to remove resource

conflict then proceed next phase.

 Design Rationale

The responsibility of MapRduce is to assigning task with

consideration of efficiency and fairness. It must maintain

high resource utilization in cluster and job running time

implies job execution.

VIII. CONCLUSION

Mapreduce is programming model for cluster to perform a

data intensive computing. In this paper we especially

exhibit that, if the resources attention on task level,

execution of each task may divided into many levels. Even

as executing those phases, many breaking- down of map

and reduce responsibilities will takes location and execute

them in a parallel throughout a massive wide variety of

system, so that you can reduce running time of of data-

intensive job.so they may perform resources allocation at

the phase-level. We can introduce prism on the phase-

level. Prism show that, how run-time resources may be

used and the way it varies over the long existence time.

Prism improves process execution set of rules and overall

performance of sources without introducing stragglers.

REFERENCES

[1] HadoopMapReduce distribution [Online]. Available:

http://hadoop.apache.org, 2015.
[2] Hadoop Capacity Scheduler [Online]. Available:

http://hadoop.apache.org/docs/stable/capacity_scheduler.html/,

2015.
[3] Hadoop Fair Scheduler [Online]. Available:

http://hadoop.apache.org/docs/r0.20.2/fair_scheduler.html, 2015.

[4] Hadoop Distributed File System [Online]. Available:
hadoop.apache.org/docs/hdfs/current/, 2015.

[5] GridMix benchmark for Hadoop clusters [Online].

Available:http://hadoop.apache.org/docs/mapreduce/current/gridmi
x.html, 2015.

[6] PUMA benchmarks [Online]. Available:

http://web.ics.purdue.edu/fahmad/benchmarks/datasets.htm, 2015.
[7] The Next Generation of Apache HadoopMapReduce[Online].

Available: http://hadoop.apache.org/docs/current/hadoop-

yarn/hadoop-yarn-site/YARN.html, 2015.
[8] R. Boutaba, L. Cheng, and Q. Zhang, “On cloud

computationalmodels and the heterogeneity challenge,” J. Internet

Serv. Appl.,vol. 3, no. 1, pp. 1–10, 2012.
[9] T. Condie, N. Conway, P. Alvaro, J. Hellerstein, K. Elmeleegy,

andR. Sears, “MapReduce online,” in Proc. USENIX Symp. Netw.

Syst.Des. Implementation, 2010, p. 21.
[10] J. Dean and S. Ghemawat, “Mapreduce: Simplified data

processingon large clusters,” Commun. ACM, vol. 51, no. 1, pp.

107–113, 2008.
[11] Savitri D.H, Narayana H.M, "PRISM: Allocation of Resources in

Phase-level using MapReduce in Hadoop," in International Journal

ofResearch in Science and Engineering Vol. 1, Special Issue: 2.
[12] T. Condie, N. Conway, P. Alvaro, J. Hellerstein, K. Elmeleegy, and

R. Sears, "MapReduce online," in Proc. USENIX Symp. Netw.

Syst.Des. Implementation, 2010, p.21.
[13] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, and K.

Talwar,“Quincy: Fair scheduling for distributed computing

clusters,”in Proc. ACMSIGOPS Symp. Oper. Syst. Principles,
2009, pp. 261–276.

[14] Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker,and I.

Stoica, “Dominant resource fairness: Fair allocation of multiple
resource types,” in Proc. USENIX Symp. Netw. Syst. Des.

Implementation, 2011, pp. 323– 336.

[15] Cloudera: 7 tips for Improving MapReduce Performance.
http://www.cloudera.com/blog/2009/12/ 7-tips-for-improving-

mapreduce-performance.

[16] Hadoop distributed file system, http://hadoop.apache.org/hdfs/
[17] Zaharia M, Konwinski A, Joseph AD, Katz R, Stoica I (2008)

ImprovingMapReduce performance in heterogeneous

environments. In: Proc. OSDI
[18] Isard M, Budiu M, Yu Y, Birrell A, Fetterly D (2007) Dryad:

distributed data-parallel programs from sequential building blocks.

In: Proc. Eurosys, March 2007, pp 59–72
[19] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz, “The case for

evaluating mapreduce performance using workload suites,” in IEEE

MASCOTS 2011, pp. 390–399.

http://hadoop/
http://hadoop/
http://hadoop.apache.org/docs/mapreduce/current/gridmix
http://hadoop.apache.org/docs/mapreduce/current/gridmix
http://hadoop.apache.org/docs/mapreduce/current/gridmix
http://web.ics.purdue/
http://hadoop.apache.org/docs/current/
http://www.cloudera.com/blog/2009/12/
http://hadoop.apache.org/hdfs/

